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In this part . . .

With the basics of calculating integrals under your
belt, the focus becomes using integration as a

problem-solving tool. You discover how to solve more
complex area problems and how to find the surface area
and volume of solids.
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Chapter 9

Forging into New Areas:
Solving Area Problems

In This Chapter
� Evaluating improper integrals

� Solving area problems with more than one function

� Measuring the area between functions

� Finding unsigned areas

� Understanding the Mean Value Theorem and calculating average value

� Figuring out arc length

With your toolbox now packed with the hows of calculating integrals,
this chapter (and Chapter 10) introduces you to some of the whys of

calculating them.

I start with a simple rule for expressing an area as two separate definite inte-
grals. Then I focus on improper integrals, which are integrals that are either
horizontally or vertically infinite. Next, I give you a variety of practical strate-
gies for measuring areas that are bounded by more than one function. I look at
measuring areas between functions, and I also get you clear on the distinction
between signed area and unsigned area.

After that, I introduce you to the Mean Value Theorem for Integrals, which
provides the theoretical basis for calculating average value. Finally, I show
you a formula for calculating arc length, which is the exact length between
two points along a function.
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Breaking Us in Two
Here’s a simple but handy rule that looks complicated but is really very easy:

f x dx f x dx f x dx
n

b

a

n

a

b

= + ### ^ ^ ^h h h

This rule just says that you can split an area into two pieces, and then add up
the pieces to get the area that you started with.

For example, the entire shaded area in Figure 9-1 is represented by the follow-
ing integral, which you can evaluate easily:

sinx dx
π

0

#

cosx x π= - =

x 0=

= –cos π – –cos 0

= 1 + 1 = 2

Drawing a vertical line at x = π
3 and splitting this area into two separate 

regions results in two separate integrals:

sin sinx dx x dx
π

π
π

3
0

3

+ ##

x

y

π

π

3

y = sin x

x =

Figure 9-1:
Splitting
the area 

sin x dx
π

0

#
into two
smaller
pieces.
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It should come as no great shock that the sum of these two smaller regions
equals the entire area:

x x
=

= π
cos cosx x

π

π
3

3
= - +-

x 0=
x =

= –cos π
3 – –cos 0 + –cos π – –cos π

3
= cos 0 – cos π

= 1 + 1 = 2

Although this idea is ridiculously simple, splitting an integral into two or
more integrals becomes a powerful tool for solving a variety of the area prob-
lems in this chapter.

Improper Integrals
Improper integrals come in two varieties — horizontally infinite and verti-
cally infinite:

� A horizontally infinite improper integral contains either ∞ or –∞ (or both)
as a limit of integration. See the next section, “Getting horizontal,” for
examples of this type of integral.

� A vertically infinite improper integral contains at least one vertical
asymptote. I discuss this further in the later section “Going vertical.”

Improper integrals become useful for solving a variety of problems in
Chapter 10. They’re also useful for getting a handle on infinite series in
Chapter 12. Evaluating an improper integral is a three-step process:

1. Express the improper integral as the limit of an integral.

2. Evaluate the integral by whatever method works.

3. Evaluate the limit.

In this section, I show you, step by step, how to evaluate both types of
improper integrals.

Getting horizontal
The first type of improper integral occurs when a definite integral has a limit
of integration that’s either ∞ or –∞. This type of improper integral is easy to
spot because infinity is right there in the integral itself. You can’t miss it.
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For example, suppose that you want to evaluate the following improper 
integral:

x
dx1

3

1

3

#

Here’s how you do it, step by step:

1. Express the improper integral as the limit of an integral.

When the upper limit of integration is ∞, use this equation:

limf x dx f x dx
a

c
a

c

=
"

3

3
# #^ ^h h

So here’s what you do:

lim
x

dx
x

dx1 1
c

c

3

1

3

1

=
"

3

3
# #

2. Evaluate the integral:
x c=lim

x2
1

c
2-

"3 x 1=
d n

lim
c2
1

2
1

c
2= - +

"3
d n

3. Evaluate the limit:

= 2
1

Before moving on, reflect for one moment that the area under an infinitely
long curve is actually finite. Ah, the magic and power of calculus!

Similarly, suppose that you want to evaluate the following:

dxe x5
0

3-

#

Here’s how you do it:

1. Express the integral as the limit of an integral.

When the lower limit of integration is –∞, use this equation:

limf x dx f x dx
b

c
c

b

=
"

3
3

-
-

# #^ ^h h

So here’s what you write:

limdx dxe ex

c

x

c

5
0

5
0

=
" 3

3
-

-

# #
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2. Evaluate the integral:

x =lim 5
1 e

c

x5 0=
" 3-

x c=c m

lim 5
1

5
1e e

c

c0 5= -
" 3-

c m

lim 5
1

5
1 e

c

c5= -
" 3-

c m

3. Evaluate the limit — in this case, as c approaches –∞, the first term is
unaffected and the second term approaches 0:

= 5
1

Again, calculus tells you that, in this case, the area under an infinitely long
curve is finite.

Of course, sometimes the area under an infinitely long curve is infinite. In
these cases, the improper integral cannot be evaluated because the limit
does not exist (DNE). Here’s a quick example that illustrates this situation:

x dx1

1

3

#

It may not be obvious that this improper integral represents an infinitely
large area. After all, the value of the function approaches 0 as x increases.
But watch how this evaluation plays out:

1. Express the improper integral as the limit of an integral:

limx dx x dx1 1
c

c

1 1

, =
"

3

3
# #

2. Evaluate the integral:
x c=lim lnx

c
=

"3 x 0=

lim ln lnc 1
c

= -
"3

At this point, you can see that the limit explodes to infinity, so it doesn’t
exist. Therefore, the improper integral can’t be evaluated, because the area
that it represents is infinite.

Going vertical
Vertically infinite improper integrals are harder to recognize than those that
are horizontally infinite. An integral of this type contains at least one vertical
asymptote in the area that you’re measuring. (A vertical asymptote is a value
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of x where f(x) equals either ∞ or –∞. See Chapter 2 for more on asymptotes.)
The asymptote may be a limit of integration or it may fall someplace between
the two limits of integration.

Don’t try to slide by and evaluate improper integrals as proper integrals. In
most cases, you’ll get the wrong answer!

In this section, I show you how to handle both cases of vertically infinite
improper integrals.

Handling asymptotic limits of integration
Suppose that you want to evaluate the following integral:

x
dx1

0

1

#

At first glance, you may be tempted to evaluate this as a proper integral. But
this function has an asymptote at x = 0. The presence of an asymptote at one
of the limits of integration forces you to evaluate this one as an improper
integral:

1. Express the integral as the limit of an integral:

lim
x

dx
x

dx1 1
c

c0

1

0

1

=
"

+
# #

Notice that in this limit, c approaches 0 from the right — that is, from
the positive side — because this is the direction of approach from inside
the limits of integration. (That’s what the little plus sign (+) in the limit in
Step 2 means.)

2. Evaluate the integral:

This integral is easily evaluated as x 2
1

- , using the Power Rule as I show
you in Chapter 4, so I spare you the details here:

x =lim x2
c 0

1=
"

+ x c=

3. Evaluate the limit:

lim c2 1 2
c 0

= -
"

+

At this point, direct substitution provides you with your final answer:

= 2

202 Part III: Intermediate Integration Topics 

15_225226-ch09.qxd  5/1/08  10:44 PM  Page 202



Piecing together discontinuous integrands
In Chapter 3, I discuss the link between integrability and continuity: If a func-
tion is continuous on an interval, it’s also integrable on that interval. (Flip to
Chapter 3 for a refresher on this concept.)

Some integrals that are vertically infinite have asymptotes not at the edges
but someplace in the middle. The result is a discontinuous integrand — that is,
function with a discontinuity on the interval that you’re trying to integrate.

Discontinuous integrands are the trickiest improper integrals to spot — you
really need to know how the graph of the function that you’re integrating
behaves. (See Chapter 2 to see graphs of the elementary functions.)

To evaluate an improper integral of this type, separate it at each asymptote
into two or more integrals, as I demonstrate earlier in this chapter in
“Breaking Us in Two.” Then evaluate each of the resulting integrals as an
improper integral, as I show you in the previous section.

For example, suppose that you want to evaluate the following integral:

sec x dx
π

2

0

#

Because the graph of sec x contains an asymptote at x = π
2 (see Chapter 2 for 

a view of this graph), the graph of sec2 x has an asymptote in the same place,
as you see in Figure 9-2.

To evaluate this integral, break it into two integrals at the value of x where
the asymptote is located:

sec sec secx dx x dx x dx
π

π
π

π
2 2 2

2
0

2

0

= + ###

y

x
–3π

2
−π
2

π
2

3π
2

y = sec2 x
Figure 9-2:

A graph
of the

improper
integral

sec x dx
π

2

0

# .
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Now, evaluate the sum of the two resulting integrals.

You can save yourself a lot of work by noticing when two regions are symmet-
rical. In this case, the asymptote at x = π

2 splits the shaded area into two 
symmetrical regions. So you can find one integral and then double it to get
your answer:

sec x dx2

π

2

0

2

= #

Now, use the steps from the previous section to evaluate this integral:

1. Express the integral as the limit of an integral:

lim sec x dx2
c

c

π
2

2

0

=
"

#

In this case, the vertical asymptote is at the upper limit of integration, 
so c approaches π

2 from the left — that is, from inside the interval where 
you’re measuring the area.

2. Evaluate the integral:
x c=lim tanx2

c π
2

=
"

x = 0a k

lim tan tanc2 0
c π

2

= -
"

^ h

3. Evaluate the limit:

Note that tan π
2 is undefined, because the function tan x has an asymptote 

at x = π
2 , so the limit does not exist (DNE). Therefore, the integral that 

you’re trying to evaluate also does not exist because the area that it 
represents is infinite.

Solving Area Problems with
More Than One Function

The definite integral allows you to find the signed area under any interval of
a single function. But when you want to find an area defined by more than
one function, you need to be creative and piece together a solution.
Professors love these problems as exam questions, because they test your
reasoning skills as well as your calculus knowledge.
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Fortunately, when you approach problems of this type correctly, you find that
they’re not terribly difficult. The trick is to break down the problem into two
or more regions that you can measure by using the definite integral, and then
use addition or subtraction to find the area that you’re looking for.

In this section, I get you up to speed on problems that involve more than one
definite integral.

Finding the area under more 
than one function
Sometimes, a single geometric area is described by more than one function. For
example, suppose that you want to find the shaded area shown in Figure 9-3.

The first thing to notice is that the shaded area isn’t under a single function,
so you can’t expect to use a single integral to find it. Instead, the region
labeled A is under y = sin x and the region labeled B is under y = cos x. First,
set up an integral to find the area of both of these regions:

sinx dxA

π

0

4

= #

cosx dxB
π

π

4

2

= #

Now, set up an equation to find their combined area:

sin cosx dx x dxA B
π

ππ

4

2

0

4

+ = + ##

ππ
2

y

y = sin x
y = cos x

A B

x  = π
4

x

Figure 9-3:
Finding the
area under

y = sin x and
y = cos x

from 0 to π
2 .

205Chapter 9: Forging into New Areas: Solving Area Problems

15_225226-ch09.qxd  5/1/08  10:49 PM  Page 205



At this point, you can evaluate each of these integrals separately. But there’s
an easier way.

Because region A and region B are symmetrical, they have the same area. So
you can find their combined area by doubling the area of a single region:

sinx dx2 2A

π

0

4

= = #

I choose to double region A because the integral limits of integration are
easier, but doubling region B also works. Now, integrate to find your answer:

x =

cosx2
π
4= -

x 0=
^ h

cos cosπ2 4 0= - --c m

2 2
2

1= - +
J

L

K
K

N

P

O
O

.2 2 0 586.= -

Finding the area between two functions
To find an area between two functions, you need to set up an equation with
a combination of definite integrals of both functions. For example, suppose
that you want to calculate the shaded area in Figure 9-4.

First, notice that the two functions y = x2 and y x= intersect where x = 1.
This is important information because it enables you to set up two definite
integrals to help you find region A:

y
y = x 2

x = 1

A
B

x

y = x

Figure 9-4:
Finding the

area
between 

y = x2 and
y x= .
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x dxA B
0

1

+ = #

x dxB 2

0

1

= #

Although neither equation gives you the exact information that you’re look-
ing for, together they help you out. Just subtract the second equation from
the first as follows:

x dx x dxA A B B
0

1
2

0

1

= + - = -# #

With the problem set up properly, now all you have to do is evaluate the two
integrals:

x x3
2

3
1

x

x

x

x

2
3

0

1
3

0

1

= - -
=

=

=

=

f fp p

3
2 0 3

1 0 3
1= - - - =c cm m

So the area between the two curves is 3
1 .

As another example, suppose that you want to find the shaded area in
Figure 9-5.

This time, the shaded area is two separate regions, labeled A and B. Region A is 
bounded above by y = x 3

1
and bounded below by y = x. However, for region B,

the situation is reversed, and the region is bounded above by y = x and 
bounded below by y = x 3

1
. I also label region C and region D, both of which

figure into the problem.

y y = x

x = 2

A

B

D
C

x

xy =
1
3

Figure 9-5:
Finding the

area
between 
y = x and 

y = x 3
1
.
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The first important step is finding where the two functions intersect — that
is, where the following equation is true:

x = x 3
1

Fortunately, it’s easy to see that x = 1 satisfies this equation.

Now, you want to build a few definite integrals to help you find the areas of
region A and region B. Here are two that can help with region A:

x dxA C 3
1

0

1

+ = #

x dx 2
1C

0

1

= =#

Notice that I evaluate the second definite integral without calculus, using
simple geometry as I show you in Chapter 1. This is perfectly valid and a
great timesaver.

Subtracting the second equation from the first provides an equation for the
area of region A:

x dx 2
1A A C C 3

1

0

1

= + - = -#

Now, build two definite integrals to help you find the area of region B:

x dx 2
3B D

1

2

+ = =#

x dxD 3
1

1

2

= #

This time, I evaluate the first definite integral by using geometry instead of
calculus. Subtracting the second equation from the first gives an equation for
the area of region B:

x dx2
3B B D D 3

1

1

2

= + - = - #
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Now you can set up an equation to solve the problem:

x dx x dx2
1

2
3A B 3

1
3
1

1

2

0

1

+ = - + - ##

x dx x dx 13
1

3
1

1

2

0

1

= - +##

At this point, you’re forced to do some calculus:

x x4
3

4
3 1

x

x

3
4

0

1

3
4

1

2

= - +
=

=

f fp p

4
3 1 0 4

3 2 4
3 1 13

4
3
4

3
4

= - - - +^c ^ ^ch m h h m

The rest is just arithmetic:

4
3

4
3 16 4

3 13
1

= - + +^ h

2
5

4
3 16 3

1

= - ^ h

≈ 0.6101

Looking for a sign
The solution to a definite integral gives you the signed area of a region (see
Chapter 3 for more). In some cases, signed area is what you want, but in
some problems you’re looking for unsigned area.

The signed area above the x-axis is positive, but signed area below the x-axis
is negative. In contrast, unsigned area is always positive. The concept of
unsigned area is similar to the concept of absolute value. So, if it’s helpful,
think of unsigned area as the absolute value of a definite integral.

In problems where you’re asked to find the area of a shaded region on a
graph, you’re looking for unsigned area. But if you’re unsure whether a ques-
tion is asking you to find signed or unsigned area, ask the professor. This
goes double if an exam question is unclear. Most professors will answer clari-
fying questions, so don’t be shy to ask.

For example, suppose that you’re asked to calculate the shaded unsigned
area that’s shown in Figure 9-6.
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This area is actually the sum of region A, which is above the x-axis, and
region B, which is below it. To solve the problem, you need to find the sum
of the unsigned areas of these two regions.

Fortunately, both functions intersect each other and the x-axis at the same
two values of x: x = –1 and x = 1. Set up definite integrals to find the area of
each region as follows:

x dx1A 4

1

1

= -
-

# _ i

x dx1B 2

1

1

=- -
-

# _ i

Notice that I negate the definite integral for region B to account for the fact
that the definite integral produces negative area below the x-axis. Now, just
add the two equations together:

x dx x dx1 1A B 4 2

1

1

1

1

+ = - - -
--

## _ _i i

Solving this equation gives you the answer that you’re looking for (be careful
with all those minus signs!):

x x x x5
1

3
1

x

x

x

x
5

1

1
3

1

1

= - - -
= -

=

= -

=J

L

K
K f

N

P

O
O p

1 5
1 1 5

1
3
1 1 3

1 1= - - - - - - - - - - -c c c cm m m m= =G G

5
4

5
4

3
2

3
2= + - - -c m

y

y = x 2 − 1

y = 1  − x 4

A

B
x

Figure 9-6:
Finding the

area
between 
y = x 2 – 1

and 
y = 1 – x 4.
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Notice at this point that the expression in the parentheses — representing
the signed area of region B — is negative. But the minus sign outside the
parentheses automatically flips the sign as intended:

5
8

3
4

15
44= + =

Measuring unsigned area between
curves with a quick trick
After you understand the concept of measuring unsigned area (which I dis-
cuss in the previous section), you’re ready for a trick that makes measuring
the area between curves very straightforward. As I say earlier in this chapter,
professors love to stick these types of problem on exams. So here’s a difficult
exam question that’s worth spending some time with:

Find the unsigned shaded area in Figure 9-7. Approximate your answer to
two decimal places by using cos 4 = –0.65.

The first step is to find an equation for the solution (which will probably give
you partial credit), and then worry about solving it.

y

y = sin x

y = 4x  − x 2

x = π

x = 4

A

D B
C

x
Figure 9-7:
Finding the

area
between 

y = 4x – x2

and y = sin x
from x = 0

to x = 4.
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I split the shaded area into three regions labeled A, B, and C. I also label
region D, which you need to consider. Notice that x = π separates regions A
and B, and the x-axis separates regions B and C.

You could find three separate equations for regions A, B, and C, but there’s a
better way.

To measure the unsigned area between two functions, use this quick trick:

Area = Integral of Top Function – Integral of Bottom Function

That’s it! Instead of measuring the area above and below the x-axis, just plug
the two integrals into this formula. In this problem, the top function is 4x – x2

and the bottom function is sin x:

sinx x dx x dx4 2

0

4

0

4

= - - ## _ i

This evaluation isn’t too horrible:

x 0=

x 4= cosx x x2 3
1 x2 3 4

- - -
=

x 0=
c am k

cos cos2 4 3
1 4 0 4 0

2 3
= - - - - - -^ ^c ^h h m h= G

cos32 3
64 4 1= - + -

When you get to this point, you can already see that you’re on track, because
the professor was nice enough to give you an approximate value for cos 4:

≈ 32 – 21.33 – 0.65 – 1 = 9.02

So the unsigned area between the two functions is approximately 9.02 units.

If the two functions change positions — that is, the top becomes the bottom
and the bottom becomes the top — you may need to break the problem up
into regions, as I show you earlier in this chapter. But even in this case, you
can still save a lot of time by using this trick.

For example, earlier in this chapter, in “Finding the area between two func-
tions,” I measure the shaded area from Figure 9-5 by using four separate
regions. Here’s how to do it using the trick in this section.
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Notice that the two functions cross at x = 1. So, from 0 to 1, the top function is
x 3

1
and from 1 to 2 the top function is x. So, set up two separate equations,

one for region A and another for the region B:

x dx x dxA 3
1

0

1

0

1

= - ##

x dx x dxB 3
1

1

2

1

2

= - ##

When the calculations are complete, you get the following values for A and B:

A = 4
1

B = 4
9

4
3 16 3

1

- ^ h

Add these two values together to get your answer:

A + B = 2
5

4
3 16 3

1

- ^ h ≈ 0.6101

As you can see, the top-and-bottom trick gets you the same answer much
more simply than measuring regions.

The Mean Value Theorem for Integrals
The Mean Value Theorem for Integrals guarantees that for every definite 
integral, a rectangle with the same area and width exists. Moreover, if you
superimpose this rectangle on the definite integral, the top of the rectangle
intersects the function. This rectangle, by the way, is called the mean-value
rectangle for that definite integral. Its existence allows you to calculate the
average value of the definite integral.

Calculus boasts two Mean Value Theorems — one for derivatives and one for
integrals. This section discusses the Mean Value Theorem for Integrals. You
can find out about the Mean Value Theorem for Derivatives in Calculus For
Dummies by Mark Ryan (Wiley).

The best way to see how this theorem works is with a visual example. The
first graph in Figure 9-8 shows the region described by the definite integral 

A x dx x dx3
1

0

1

0

1

= -# # . This region obviously has a width of 1, and you can 

evaluate it easily to show that its area is 3
7 .
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The second graph in Figure 9-8 shows a rectangle with a width of 1 and an 
area of 3

7 . It should come as no surprise that this rectangle’s height is also 3
7 , 

so the top of this rectangle intersects the original function.

The fact that the top of the mean-value rectangle intersects the function is
mostly a matter of common sense. After all, the height of this rectangle repre-
sents the average value that the function attains over a given interval. This
value must fall someplace between the function’s maximum and minimum
values on that interval.

Here’s the formal statement of the Mean Value Theorem for Integrals:

If f(x) is a continuous function on the closed interval [a, b], then there exists
a number c in that interval such that:

f x dx f c b a
a

b

= -$# ^ ^ ^h h h

This equation may look complicated, but it’s basically a restatement of this
familiar equation for the area of a rectangle:

Area = Height · Width

In other words: Start with a definite integral that expresses an area, and then
draw a rectangle of equal area with the same width (b – a). The height of that
rectangle — f(c) — is such that its top edge intersects the function where x = c.

The value f(c) is the average value of f(x) over the interval [a, b]. You can cal-
culate it by rearranging the equation stated in the theorem:

f c b a f x dx1

a

b

=
- $ #^ ^h h

y

2

y = x 2 y = x 2

1
x

21
x

y

7
3

Figure 9-8:
A definite

integral and
its mean-

value
rectangle
have the

same width
and area.
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For example, here’s how you calculate the average value of the shaded area
in Figure 9-9:

f c x dx4 2
1 3

2

4

=
- $ #^ h

x2
1

4
1

x

x
4

2

4

=
=

=

f p

2
1

4
1 4 4

1 24 4= -c m

2
1 64 4 30= - =^ h

Not surprisingly, the average value of this integral is 30, a value between the
function’s minimum of 8 and its maximum of 64.

Calculating Arc Length
The arc length of a function on a given interval is the length from the starting
point to the ending point as measured along the graph of that function.

In a sense, arc length is similar to the practical measurement of driving dis-
tance. For example, you may live only 5 miles from work “as the crow flies,”
but when you check your odometer, you may find that the actual drive is

y

y = x 3

8

x

64
y = x 3

y

4
x

242

30

Figure 9-9:
The definite

integral 

x dx3

2

4

#
and its

mean-value
rectangle.
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closer to 7 miles. Similarly, the straight-line distance between two points is
always less than the arc length along a curved function that connects them.

Using the formula, however, often involves trig substitution (see Chapter 7
for a refresher on this method of integration). 

The formula for the arc length along a function y = f(x) from a to b is as follows:

dx
dy

dx1
a

b 2

+# d n

For example, suppose that you want to calculate the arc length along the func-
tion y = x2 from the point where x = 0 to the point where x = 2 (see Figure 9-10).

Before you begin, notice that if you draw a straight line between these two
points, (0, 0) and (2, 4), its length is .20 4 4721. . So the arc length should be
slightly greater.

To calculate the arc length, first find the derivative of the function x2:

dx
dy

x2=

Now, plug this derivative and the limits of integration into the formula as 
follows:

x dx1 2
2

0

2

+# ^ h

x dx1 4 2

0

2

= +#

y

2(0, 0)

(2, 4)

y = x 2

x

4

Figure 9-10:
Measuring

the arc
length along

y = x2 from
(0, 0) to 

(2, 4).
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Calculating arc length usually gives you an opportunity to practice trig 
substitution — in particular, the tangent case. When you draw your trig sub-
stitution triangle, place x1 4 2+ on the hypotenuse, 2x on the opposite side,
and 1 on the adjacent side. This gives you the following substitutions:

secx θ1 4 2+ =

2x = tan θ

x = 2
1 tan θ

dx = 2
1 sec2 θ dθ

The result is this integral:

sec dθ θ2
1 3#

Notice that I remove the limits of integration because I plan to change the vari-
able back to x before computing the definite integral. I spare you the details of
calculating this indefinite integral, but you can see them in Chapter 7. Here’s
the result:

= 4
1 (ln |sec θ + tan θ| + tan θ sec θ) + C

Now, write the each sec θ and tan θ in terms of x:

ln x x x x x C4
1 1 4 2 2 1 42 2 2+ + + + + +b l

At this point, I’m ready to evaluate the definite integral that I leave off earlier:

x dx1 4 2

0

2

+#

x 2=ln x x x x4
1 1 4 2 2 1 42 2= + + + +

x 0=
b l

ln4
1 1 4 2 2 2 2 2 1 4 2 0

2 2
= + + + + -^ ^ ^ ^d h h h h n

You can either take my word that the second part of this substitution works
out to 0 or calculate it yourself. To finish up:

ln4
1 17 4 17= + +

≈ 0.5236 + 4.1231 = 4.6467
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Chapter 10

Pump up the Volume: Using
Calculus to Solve 3-D Problems

In This Chapter
� Understanding the meat-slicer method for finding volume

� Using inverses to make a problem easier to solve

� Solving problems with solids of revolution and surfaces of revolution

� Finding the space between two surfaces

� Understanding the shell method for finding volume

In Chapter 9, I show you a bunch of different ways to use integrals to find
area. In this chapter, you add a dimension by discovering how to use inte-

grals to find volumes and surface areas of solids.

First, I show you how to find the volume of a solid by using the meat-slicer
method, which is really a 3-D extension of the basic integration tactic you
already know from Chapter 1: slicing an area into an infinite number of pieces
and adding them up.

As with a real meat slicer, this method works best when the blade is slicing
vertically — that is, perpendicular to the x-axis. So, I also show you how to
use inverses to rotate some solids into the proper position.

After that, I show you how to solve two common types of problems that calcu-
lus teachers just love: finding the volume of a solid of revolution and finding
the area of a surface of revolution.

With these techniques in your back pocket, you move on to more complex
problems, where a solid is described as the space between two surfaces.
These problems are the 3-D equivalent of finding an area between two curves,
which I discuss in Chapter 9.
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To finish up, I give you an additional way to find the volume of a solid: the
shell method. Then, I provide some practical perspective on all the methods
in the chapter so you know when to use them.

Slicing Your Way to Success
Did you ever marvel at the way in which a meat slicer turns an entire salami
into dozens of tasty little paper-thin circles? Even if you’re a vegetarian, calcu-
lus provides you with an animal-friendly alternative: the meat-slicer method
for measuring the volume of solids.

The meat-slicer method works best with solids that have similar cross 
sections. (I discuss this further in the following section.) Here’s the plan:

1. Find an expression that represents the area of a random cross section
of the solid in terms of x.

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

3. Evaluate this integral.

Don’t worry if these steps don’t make a whole lot of sense yet. In this section,
I show you when and how to use the meat-slicer method to find volumes that
would be difficult or impossible without calculus.

Finding the volume of a solid 
with congruent cross sections
Before I get into calculus, I want to provide a little bit of background on find-
ing the volume of solids. Spending a few minutes thinking about how volume
is measured without calculus pays off big-time when you step into the calcu-
lus arena. This is strictly no-brainer stuff — some basic, solid geometry that
you probably know already. So just lie back and coast through this section.

One of the simplest solids to find the volume of is a prism. A prism is a solid
that has all congruent cross sections in the shape of a polygon. That is, no
matter how you slice a prism parallel to its base, its cross section is the same
shape and area as the base itself.

The formula for the volume of a prism is simply the area of the base times the
height:

V = Ab · h

220 Part III: Intermediate Integration Topics 

16_225226-ch10.qxd  5/1/08  11:15 PM  Page 220



So, if you have a triangular prism with a height of 3 inches and a base area of
2 square inches, its volume is 6 cubic inches.

This formula also works for cylinders — which are sort of prisms with a cir-
cular base — and generally any solid that has congruent cross sections. For
example, the odd-looking solid in Figure 10-1 fits the bill nicely. In this case,
you’re given the information that the area of the base is 7 cm2 and the height
is 4 cm, so the volume of this solid is 28 cm3.

Finding the volume of a solid with congruent cross sections is always simple
as long as you know two things:

� The area of the base — that is, the area of any cross section

� The height of the solid

Finding the volume of a solid 
with similar cross sections
In the previous section, you didn’t have to use any calculus brain cells. But
now, suppose that you want to find the volume of the scary-looking hyper-
bolic cooling tower on the left side of Figure 10-2.

What makes this problem out of the reach of the formula for prisms and
cylinders? In this case, slicing parallel to the base always results in the same
shape — a circle — but the area may differ. That is, the solid has similar cross
sections rather than congruent ones.

h = 4 cm

Ab = 7 cm2

Figure 10-1:
Finding the

volume of
an odd-

looking solid
with a

constant
height.
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You can estimate this volume by slicing the solid into numerous cylinders,
finding the volume of each cylinder by using the formula for constant-height
solids, and adding these separate volumes. Of course, making more slices
improves your estimate. And, as you may already suspect, adding the limit of
an infinite number of slices gives you the exact volume of the solid.

Hmmm . . . this is beginning to sound like a job for calculus. In fact, what I hint
at in this section is the meat-slicer method, which works well for measuring
solids that have similar cross sections.

When a problem asks you to find the volume of a solid, look at the picture of
this solid and figure out how to slice it up so that all the cross sections are
similar. This is a good first step in understanding the problem so that you can
solve it.

To measure weird-shaped solids that don’t have similar cross sections, you
need multivariable calculus, which is the subject of Calculus III. See Chapter 14
for an overview of this topic.

Measuring the volume of a pyramid
Suppose that you want to find the volume of a pyramid with a 6-x-6-unit
square base and a height of 3 units. Geometry tells you that you can use the
following formula:

V = 3
1 bh = 3

1 (36)(3) = 36

Figure 10-2:
Estimating

the volume
of a

hyperbolic
cooling

tower by
slicing it into

cylindrical
sections.
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This formula works just fine, but it doesn’t give you insight into how to solve
similar problems; it works only for pyramids. The meat-slicer method, how-
ever, provides an approach to the problem that you can generalize to use for
many other types of solids.

To start out, I skewer this pyramid on the x-axis of a graph, as shown in
Figure 10-3. Notice that the vertex of the pyramid is at the origin, and the
center of the base is at the point (6, 0).

To find the exact volume of the pyramid, here’s what you do:

1. Find an expression that represents the area of a random cross section
of the pyramid in terms of x.

At x = 1, the cross section is 22 = 4. At x = 2, it’s 42 = 16. And at x = 3, it’s
62 = 36. So generally speaking, the area of the cross section is:

A = (2x)2 = 4x2

2. Use this expression to build a definite integral that represents the
volume of the pyramid.

In this case, the limits of integration are 0 and 3, so:

x dx4V 2

0

3

= #

3. Evaluate this integral:

x 3=x3
4 3

x 0=

= 3
4 33 – 0 = 36

x

y

Figure 10-3:
A pyramid
skewered

on a graph
and sliced
into three

pieces.
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This is the same answer provided by the formula for the pyramid. But this
method can be applied to a far wider variety of solids.

Measuring the volume of a weird solid
After you know the basic meat-slicer technique, you can apply it to any solid
with a cross section that’s a function of x. In some cases, these solids are
harder to describe than they are to measure. For example, have a look at
Figure 10-4.

The solid in Figure 10-4 consists of two exponential curves — one described
by the equation y = ex, and the other described by placing the same curve
directly in front of the x-axis — joined by straight lines. The other sides of the
solid are bounded planes slicing perpendicularly in a variety of directions.

Notice that when you slice this solid perpendicular with the x-axis, its cross
section is always an isosceles right triangle. This is an easy shape to mea-
sure, so the slicing method works nicely to measure the volume of this solid.
Here are the steps:

1. Find an expression that represents the area of a random cross section
of the solid.

The triangle on the y-axis has a height and base of 1 — that is, e0. And
the triangle on the line x = 1 has a height and base of e1, which is e. In
general, the height and base of any cross section triangle is ex.

So, here’s how to use the formula for the area of a triangle to find the
area of a cross section in terms of x:

A = 2
1 b · h = 2

1 ex · ex = 2
1 e2x

x

y = ex
y

1 1 x

y

Figure 10-4:
A solid

based on
two

exponential
curves in

space.
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2. Use this expression to build a definite integral that represents the
volume of the solid.

Now that you know how to measure the area of a cross section, integrate
to add all the cross sections from x = 0 to x = 1:

dx2
1V e x2

0

1

= #

3. Evaluate this integral to find the volume.

dx2
1 e x2

0

1

= #

x 1=

4
1 e x2=

x 0=

4
1

4
1e e2 0= -

≈ 1.597

Turning a Problem on Its Side
When using a real meat slicer, you need to find a way to turn whatever you’re
slicing on its side so that it fits. The same is true for calculus problems.

For example, suppose that you want to measure the volume of the solid
shown in Figure 10-5.

The good news is that this solid has cross sections that are all similar trian-
gles, so the meat-slicer method will work. Unfortunately, as the problem cur-
rently stands, you’d have to make your slices perpendicular to the y-axis. But
to use the meat-slicer method, you must make your slices perpendicular to
the x-axis.

x

y

y = x 4

2

y = ± x 4
1

x

yFigure 10-5:
Using

inverses to
get a

problem
ready for

the meat-
slicer

method.
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To solve the problem, you first need to flip the solid over to the x-axis, as
shown on the right side of Figure 10-5. The easiest way to do this is to use the
inverse of the function y = x4. To find the inverse, switch x and y in the equation
and solve for y:

x = y4

x y4
1

! =a k

Note that the resulting equation x y4
1

! =a k in this case isn’t a function of x
because a single x-value can produce more than one y-value. However, you
can use this equation in conjunction with the meat-slicer method to find the
volume that you’re looking for.

1. Find an expression that represents the area of a random cross section
of the solid.

The cross section is an isosceles triangle with a height of 3 and a base of 
x2 4

1
, so use the formula for the area of a triangle:

bh x x2
1

2
1 2 3 3A 4

1
4
1

= = =a ^k h

2. Use this expression to build a definite integral that represents the
volume of the solid.

x dx3V 4
1

0

2

= #

3. Solve the integral.

x 2=x3 5
4

4
5

x 0=
c m

x 2=x5
12

4
5

x 0=

Now, evaluate this expression:

5
12 2 04

5
= -

5
12 32 4

1
=

≈ 5.7082

Two Revolutionary Problems
Calculus professors are always on the lookout for new ways to torture their
students. Okay, that’s a slight exaggeration. Still, sometimes it’s hard to
fathom exactly why a problem without much practical use makes the
Calculus Hall of Fame.
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In this section, I show you how to tackle two problems of dubious practical
value (unless you consider the practicality passing Calculus II!). First, I show
you how to find the volume of a solid of revolution: a solid created by spin-
ning a function around an axis. The meat-slicer method, which I discuss in
the previous section, also applies to problems of this kind.

Next, I show you how to find the area of a surface of revolution: a surface cre-
ated by spinning a function around an axis. Fortunately, a formula exists for
finding or solving this type of problem.

Solidifying your understanding 
of solids of revolution
A solid of revolution is created by taking a function, or part of a function, and
spinning it around an axis — in most cases, either the x-axis or the y-axis.

For example, the left side of Figure 10-6 shows the function y = 2 sin x
between x = 0 and x = π

2 . 

Every solid of revolution has circular cross sections perpendicular to the axis
of revolution. When the axis of revolution is the x-axis (or any other line
that’s parallel with the x-axis), you can use the meat-slicer method directly,
as I show you earlier in this chapter.

x

y

π
2

y = 2 sin x

Figure 10-6:
A solid of

revolution of
y = sin x

around the
x-axis.

227Chapter 10: Pump up the Volume: Using Calculus to Solve 3-D Problems

16_225226-ch10.qxd  5/1/08  11:21 PM  Page 227



However, when the axis of revolution is the y-axis (or any other line that’s
parallel with the y-axis), you need to modify the problem as I show you in the
earlier section “Turning a Problem on Its Side.”

To find the volume of this solid of revolution, use the meat-slicer method:

1. Find an expression that represents the area of a random cross section
of the solid (in terms of x).

This cross section is a circle with a radius of 2 sin x:

sin sinr x xπ π π2 4A 2 2 2= = =^ h

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

This time, the limits of integration are from 0 to π
2 :

sin x dxπ4V

π

2

0

2

= #

sin x dxπ4

π

2

0

2

= #

3. Evaluate this integral by using the half-angle formula for sines, as I
show you in Chapter 7:

cos x
dxπ4 2

1 2
π

0

2

=
-

#
^ h

cosdx x dxπ2 1 2

π π

0

2

0

2

= -# #
J

L

K
K
K

N

P

O
O
O

x x= =

sinx xπ2 2
1 2

π π
2 2= -

x x0 0= =
d n

Now, evaluate:

= sinπ π π2 2 0 2
1 0- - -c cm m= G

= π π2 2c m

= π2

≈ 9.8696

So the volume of this solid of revolution is approximately 9.8696 cubic units.

Later in this chapter, I give you more practice measuring the volume of solids
of revolution.
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Skimming the surface of revolution
The nice thing about finding the area of a surface of revolution is that there’s
a formula you can use. Memorize it and you’re halfway done.

To find the area of a surface of revolution between a and b, use the following
formula:

r dx
dy

dxπ2 1A
a

b 2

= +# d n

This formula looks long and complicated, but it makes more sense when you
spend a minute thinking about it. The integral is made from two pieces:

� The arc-length formula, which measures the length along the surface
(see Chapter 9)

� The formula for the circumference of a circle, which measures the length
around the surface

So multiplying these two pieces together is similar to multiplying length and
width to find the area of a rectangle. In effect, the formula allows you to mea-
sure surface area as an infinite number of little rectangles.

When you’re measuring the surface of revolution of a function f(x) around the
x-axis, substitute r = f(x) into the formula I gave you:

f x f x dxπ2 1A
a

b
2

= +# l^ ^h h8 B

For example, suppose that you want to find the surface of revolution that’s
shown in Figure 10-7.

x1

y

y = x3

Figure 10-7:
Measuring
the surface

of revolution
of y = x3

between 
x = 0 and 

x = 1.
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To solve this problem, first note that for f(x) = x3, f'(x) = 3x2. So set up the
problem as follows:

x x dxπ2 1 3A 3 2 2

0

1

= +# _ i

To start off, simplify the problem a bit:

x x dxπ2 1 93 4

0

1

= +#

You can solve this problem by using variable substitution:

Let u = 1 + 9x4

du = 36x3 dx

u duπ36
1 2

1

10

= $ #

Notice that I change the limits of integration: When x = 0, u = 1. And when x = 1,
u = 10.

u duπ18
1

1

10

= #

Now, you can perform the integration:

u 10=uπ18
1

3
2

2
3

= $ u 1=

u 10=uπ27
1

2
3

=
u 1=

Finally, evaluate the definite integral:

π π27
1 10 27

1 12
3

2
3

= -

π π27
1 10 10 27

1= -

≈ 3.5631

Finding the Space Between
In Chapter 9, I show you how to find the area between two curves by subtract-
ing one integral from another. This same principle applies in three dimensions
to find the volume of a solid that falls between two different surfaces.
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The meat-slicer method, which I describe earlier in this chapter, is useful for
many problems of this kind. The trick is to find a way to describe the donut-
shaped area of a cross section as the difference between two integrals: one
integral that describes the whole shape minus another that describes the hole.

For example, suppose that you want to find the volume of the solid shown in
Figure 10-8.

This solid looks something like a bowl turned on its side. The outer edge is
the solid of revolution around the x-axis for the function x . The inner edge
is the solid of revolution around the x-axis for the function x 3

1
. 

1. Find an expression that represents the area of a random cross section
of the solid.

That is, find the area of a circle with a radius of x and subtract the area
of a circle with a radius of x 3

1
:

x x x xπ π πA
2

3
1 2

3
2

= - = -` a aj k k

2. Use this expression to build a definite integral that represents the
volume of the solid.

The limits of integration this time are 0 and 4:

x x dxπV 3
2

0

4

= -# a k

x

x = 4

y

y = x 3

y = √x
1

Figure 10-8:
A vase-

shaped solid
between

two
surfaces of
revolution.
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3. Solve the integral:

x x dxπ 3
2

0

4

= -# a k

x dx x dxπ 3
2

0

4

0

4

= - ##
J

L

K
K

N

P

O
O

x x4 4= =x xπ 2
1

5
32

3
5

= -x x0 0= =
c m

Now, evaluate this expression:

= π 2
1 4 0 5

3 4 02
3
5

- - -c cm m= G

= ,π 8 5
3 1 024 3

1
-c m

≈ 6.1336

Here’s a problem that brings together everything you’ve worked with from
the meat-slicer method: Find the volume of the solid shown in Figure 10-9.
This solid falls between the surface of revolution y = ln x and the surface of
revolution y = x 4

3
, bounded below by y = 0 and above by y = 1.

The cross section of this solid is shown in the right side of Figure 10-9:
a circle with a hole in the middle.

x

Cross section:
y = ln x

y

y = x 4
3

Figure 10-9:
Another

solid formed
between

two
surfaces of
revolution.
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Notice, however, that this cross section is perpendicular to the y-axis. To use
the meat-slicer method, the cross section must be perpendicular to the x-axis.
Modify the problem using inverses, as I show you in “Turning a Problem on
Its Side”:

x = ln y x = y 4
3

ex = y x 3
4
= y

The resulting problem is shown in Figure 10-10.

Now, you can use the meat-slicer method to solve the problem:

1. Find an expression that represents the area of a random cross section
of the solid.

That is, find the area of a circle with a radius of ex and subtract the area
of a circle with a radius of x 3

4
. This is just geometry, but I take it slowly so

that you can see all the steps. Remember that the area of a circle is πr2:

A = Area of outer circle – Area of inner circle

= π (ex)2 – xπ 3
4 2

a k

= π e2x – πx 3
8

x

Cross section:

y = ex
y

y = x 3
4

Radius of outer circle = ex

Radius of inner circle = x 3
4

Figure 10-10:
Use

inverses to
rotate the

problem
from

Figure 10-9
so that you

can use the
meat-slicer

method.
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2. Use this expression to build a definite integral that represents the
volume of the solid.

The limits of integration are 0 and 1:

x dxπ πV e x2
3
8

0

1

= -# a k

3. Evaluate the integral:

dx x dxπ πe x2
3
8

0

1

0

1

= - ##

xπ π
2 11

3e x
x

x

x

x2
0

1
3
11

0

1= -
=

=

=

=

π π π π
2 2 11

3 1 11
3 0e e2 0 3

11
3
11

= - - -c ^ ^cm h h m

π π π
2 2 11

3e2= - -

≈ 2.9218

So the volume of this solid is approximately 2.9218 cubic units.

Playing the Shell Game
The shell method is an alternative to the meat-slicer method, which I discuss
earlier in this chapter. It allows you to measure the volume of a solid by mea-
suring the volume of many concentric surfaces of the volume, called “shells.”

Although the shell method works only for solids with circular cross sections,
it’s ideal for solids of revolution around the y-axis, because you don’t have to
use inverses of functions, as I show you in “Turning a Problem on Its Side.”
Here’s how it works:

1. Find an expression that represents the area of a random shell of the
solid in terms of x.

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

3. Evaluate this integral.

As you can see, this method resembles the meat-slicer method. The main dif-
ference is that you’re measuring the area of shells instead of cross sections.
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Peeling and measuring a can of soup
You can use a can of soup — or any other can that has a paper label on it —
as a handy visual aid to give you insight into how the shell method works. To
start out, go to the pantry and get a can of soup.

Suppose that your can of soup is industrial size, with a radius of 3 inches and
a height of 8 inches. You can use the formula for a cylinder to figure out its
volume as follows:

V = Ab · h = 32π · 8 = 72π

Another option is the meat-slicer method, as I show you earlier in this chap-
ter. A third option, which I focus on here, is the shell method.

To understand the shell method, slice the can’s paper label vertically, and
carefully remove it from the can, as shown in Figure 10-11. (While you’re at it,
take a moment to read the label so that you’re not left with “mystery soup.”)

SOUP

SOUP

x = 3 in

h = 8

8 in

6π in

Figure 10-11:
Removing

the label
from a can

of soup can
help you

understand
the shell
method.
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Notice that the label is simply a rectangle. Its shorter side is equal in length
to the height of the can (8 inches) and its longer side is equal to the circum-
ference (2π · 3 inches = 6π inches). So the area of this rectangle is 48 square
inches.

Now here’s the crucial step: Imagine that the entire can is made up of infi-
nitely many labels wrapped concentrically around each other, all the way to
its core. The area of each of these rectangles is:

A = 2π x · 8 = 16π x

The variable x in this case is any possible radius, from 0 (the radius of the
circle at the very center of the can) to 3 (the radius of the circle at the outer
edge). Here’s how you use the shell method, step by step, to find the volume
of the can:

1. Find an expression that represents the area of a random shell of the
can (in terms of x):

A = 2π x · 8 = 16π x

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the can.

Remember that with the shell method, you’re adding up all the shells
from the center (where the radius is 0) to the outer edge (where the
radius is 3). So use these numbers as the limits of integration:

x dxπ16V
0

3

= #

3. Evaluate this integral:

x 3=xπ16 2
1 2= $ x 0=

x 3=xπ8 2= x 0=

Now, evaluate this expression:

= 8π (3)2 – 0 = 72π

The shell method verifies that the volume of the can is 72π cubic inches.

Using the shell method
One advantage of the shell method over the meat-slicer method comes into
play when you’re measuring a volume of revolution around the y-axis.
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Earlier in this chapter I tell you that the meat-slicer method works best when a
solid is on its side — that is, when you can slice it perpendicular to the x-axis.
But when the similar cross sections of a solid are perpendicular to the y-axis,
you need to use inverses to realign the problem before you can start slicing.
(See the earlier section “Turning a Problem on Its Side” for more details.)

This realignment step isn’t necessary for the shell method. This makes the
shell method ideal for measuring solids of revolution around the y-axis.
For example, suppose that you want to measure the volume of the solid
shown in Figure 10-12.

Here’s how the shell method can give you a solution without using inverses:

1. Find an expression that represents the area of a random shell of the
solid (in terms of x).

Remember that each shell is a rectangle with two different sides: One
side is the height of the function at x — that is, cos x. The other is the
circumference of the solid at x — that is, 2πx. So, to find the area of a
shell, multiply these two numbers together:

A = 2πx cos x

2. Use this expression to build a definite integral (in terms of dx) that
represents the volume of the solid.

In this case, remember that you’re adding up all the shells from the 

center (at x = 0) to the outer edge (at x = π
2 ).

cosx x dxπ2V

π

0

2

= #

cosx x dxπ2

π

0

2

= #

y = cos x

x

y

2
π

Figure 10-12:
Using the

shell
method to

find the
volume of a

solid of
revolution.
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3. Evaluate the integral.

This integral is pretty easy to solve using integration by parts:

x =sin cosx x x
π
2+

x 0=

Now, evaluate this expression:

= sin cos sin cosπ π π
2 2 2 0 0 0+ - +c ^m h

= π
2 0 0 1+ - +c ^m h

= π
2 1-

≈ 0.5708

So the volume of the solid is approximately 0.5708 cubic units.

Knowing When and How 
to Solve 3-D Problems

Because students are so often confused when it comes to solving 3-D calculus
problems, here’s a final perspective on all the methods in this chapter, and
how to choose among them.

First, remember that every problem in this chapter falls into one of these two
categories:

� Finding the area of a surface of revolution

� Finding a volume of a solid

In the first case, use the formula I provide earlier in this chapter, in
“Skimming the surface of revolution.”

In the second case, remember that the key to measuring the volume of any
solid is to slice it up in the direction where it has similar cross sections whose
area can be measured easily — for example, a circle, a square, or a triangle.
So, your first question is whether these similar cross sections are arranged
horizontally or vertically.

� Horizontally means that the solid is already in position for the meat-
slicer method. (If it’s helpful, imagine slicing a salami in a meat-slicer.
The salami must be aligned lying on its side — that is, horizontally —
before you can begin slicing.)

� Vertically means that the solid is standing upright so that the slices are
stacked on top of each other.
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When the cross sections are arranged horizontally, the meat-slicer method is
the easiest way to handle the problem (see “Slicing Your Way to Success” ear-
lier in this chapter).

When the cross sections are arranged vertically, however, your next question
is whether these cross sections are circles:

� If the cross sections are not circles, you must use inverses to flip the
solid in the horizontal direction (as I discuss in “Turning a Problem on
Its Side”).

� If they are circles, you can either use inverses to flip the solid in the hor-
izontal direction (as I discuss in “Turning a Problem on Its Side”) or use
the shell method (as I discuss in “Playing the Shell Game”).
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